Some Computations of Non - Abelian Tensor Products of Groups

نویسندگان

  • R. BROWN
  • D. L. JOHNSON
  • E. F. ROBERTSON
چکیده

A generalised tensor product G 0 H of groups G, H has been introduced by R. Brown and J.-L. Loday in [3,4]. It arises in applications in homotopy theory of a generalised Van Kampen theorem. The reason why G 0 H does not necessarily reduce to GUh Oz Huh, the usual tensor product over Z of the abelianisations, is that it is assumed that G acts on H (on the left) and H acts on G (on the left), and these actions are taken into account in the definition of the tensor product. A group G acts on itself by conjugation (" g = hgh-') and so the tensor square GO G is always defined. Further, the commutator map G x G + G induces a homomorphism of groups K: G 0 G + G, sending g@ h to [g, h] =ghg-'h-l. We write J,(G) for Ker IC; its topological interest is the formula [3,4] qSK(G, l)=J,(G).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The non-abelian tensor product of normal crossed submodules of groups

In this article, the notions of non-abelian tensor and exterior products of two normal crossed submodules of a given crossed module of groups are introduced and some of their basic properties are established. In particular, we investigate some common properties between normal crossed modules and their tensor products, and present some bounds on the nilpotency class and solvability length of the...

متن کامل

On the Exponent of Triple Tensor Product of p-Groups

The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...

متن کامل

A tensor product approach to the abstract partial fourier transforms over semi-direct product groups

In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.

متن کامل

Pairings from a tensor product point of view

Pairings are particular bilinear maps, and as any bilinear maps they factor through the tensor product as group homomorphisms. Besides, nothing seems to prevent us to construct pairings on other abelian groups than elliptic curves or more general abelian varieties. The point of view adopted in this contribution is based on these two observations. Thus we present an elliptic curve free study of ...

متن کامل

Irreducibility of the tensor product of Albeverio's representations of the Braid groups $B_3$ and $B_4$

‎We consider Albeverio's linear representations of the braid groups $B_3$ and $B_4$‎. ‎We specialize the indeterminates used in defining these representations to non zero complex numbers‎. ‎We then consider the tensor products of the representations of $B_3$ and the tensor products of those of $B_4$‎. ‎We then determine necessary and sufficient conditions that guarantee the irreducibility of th...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1985